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We contrast two sets of conditions that govern the transition in which classical dynamics emerges from the
evolution of a quantum system. The first was derived by considering the trajectories seen by an observer
�dubbed the “strong” transition� �Bhattacharya et al., Phys. Rev. Lett. 85, 4852 �2000��, and the second by
considering phase-space densities �the “weak” transition� �Greenbaum et al., Chaos 15, 033302 �2005��. On
the face of it these conditions appear rather different. We show, however, that in the semiclassical regime, in
which the action of the system is large compared to �, and the measurement noise is small, they both offer an
essentially equivalent local picture. Within this regime, the weak conditions dominate while in the opposite
regime where the action is not much larger than �, the strong conditions dominate.
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I. INTRODUCTION

It has been established by a number of recent works that
the act of continuously observing a quantum system is suffi-
cient to induce a transition from quantum to classical dynam-
ics, so long as the action of the system is sufficiently large
and the measurement sufficiently strong �1–12�. Under these
conditions the quantum system remains well-localized in
phase space, any noise introduced by the measurement is
negligible, and the mean position and momentum of the
quantum particle follow the smooth trajectories of classical
mechanics. In particular, this approach provides a detailed
understanding of how classical chaos emerges from quantum
dynamics in the classical limit. Measurement �or equiva-
lently the extraction of information by an environment,
whether explicitly observed or not� is essential for this pro-
cess: closed quantum systems cannot exhibit chaos, as dem-
onstrated by results such as the Kosloff-Rice theorem �13,14�
�reviews of this topic are given in �15,16��.

Prior to this type of analysis, research on the quantum-to-
classical transition focused on phase-space distribution func-
tions, rather than observed trajectories. If the initial condi-
tions for a classical system are not known precisely, and it is
not measured during its evolution, then the state of the sys-
tem is described by an ever broadening probability density in
phase space. The dynamics of this density are given by the
classical Liouville equation �17�. A quantum analog of this
phase-space distribution is the Wigner function �18�. For a
classically chaotic, one-dimensional, time-dependent Hamil-
tonian, it was found that the interaction with a large �Mar-
kovian� environment would transform the dynamics of the
Wigner function into that of the classical phase-space den-
sity, at least under some circumstances �19�. The study of the
quantum-to-classical transition for phase-space densities un-
der generic environmental interactions is often referred to as
“decoherence” �20,21�. Heuristic arguments were devised to
explain this phenomenon for classically chaotic systems �20�
although, due to the complexity of the quantum and classical
evolution equations for these systems, such arguments are
not easy to make precise. Nevertheless, the mechanisms,
valid in the semiclassical limit, by which the Wigner func-
tion closely approximates the classical density for one-

dimensional, time-dependent, classically chaotic systems
have recently been reported �22,23� and provide one focus
for the present work.

The two approaches to the quantum-to-classical transition
for open systems, the trajectory-level method employing
continuous measurement theory, and the distribution ap-
proach involving the Wigner function, in fact, may treat pre-
cisely the same physical situation. When a quantum system
interacts with a Markovian environment, this environment
continually carries away information about the system. If an
observer chooses to measure this information, the resulting
dynamics is described by the stochastic master equation of
continuous quantum measurement theory �24,25�. If the ob-
server does not make use of this information, then the equa-
tion reduces to an evolution equation for the Wigner function
under a Markovian environment, as employed in the studies
of decoherence. Note that the act of observing the environ-
ment has no additional effect on the system than that already
imposed by the environment. This is why the standard
distribution-level description of an environmental interaction
is given by averaging over all possible realizations of the
underlying trajectories �26�.

As a result, continuous measurement theory can be used
mathematically as a way to analyze the behavior of the
Wigner function in the presence of an environment. This is
because the measurement equations correctly describe the
Wigner function dynamics regardless of whether an observer
happens to be “actually” monitoring the system or not. Thus
a continuously measured system behaving classically at the
trajectory level should exhibit a corresponding Wigner func-
tion, which reproduces the classical phase-space density,
though the converse need not be true. Namely, a density
undergoing a noise induced transition may not have a smooth
classical trajectory picture.

While continuous measurement will explain the emer-
gence of classical motion at the level of phase-space densi-
ties, there are other relevant questions regarding the relation-
ship between the emergence of classicality at the two levels,
densities and trajectories. In this paper, we address two of
these. The first is to define more precisely the circumstances
under which the emergence of classicality at one level effects
emergence at the other. Specifically, since phase-space den-
sities can converge without the underlying, observed trajec-
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tories having become classical, we ask under what conditions
the emergence of a classical phase-space density does imply
that an observer would see the classical trajectories. The sec-
ond, related, question regards two sets of conditions that
govern the emergence of classicality. The first, derived by
Bhattacharya et al. �6,8�, provides conditions under which
the observed trajectories of a quantum system will obey clas-
sical dynamics. The second, derived by Greenbaum et al.
�22,23�, shows how the Wigner function matches its classical
counterpart. These two sets of conditions were derived in
quite different ways, involving different concepts, and we
wish to understand the relationship between them.

In what follows we will refer to the emergence of classi-
cality at the level of the phase-space densities as the weak
quantum-to-classical transition �weak QCT�, and the emer-
gence at the level of observed trajectories as the strong QCT
�27�. In the next section we summarize the arguments used to
derive the conditions for the emergence of classicality in
both the strong �8� and weak �22,23� cases and present a
useful reformulation of the latter. In Sec. III we analyze the
relationship between the weak and strong transitions. In par-
ticular we explore the nature of the regime where the weak
transition implies the strong as opposed to the one in which
the weak QCT is satisfied but the strong is not. In Sec. IV we
present an alternative approach to deriving the conditions in
which the weak transition implies the strong transition. This
is subsumed by the condition derived in Sec. III. In Sec. V
we conclude with a brief summary of the main results.

II. INEQUALITIES GOVERNING THE
QUANTUM-TO-CLASSICAL TRANSITION

A. The strong QCT

In Refs. �6,8� Bhattacharya et al. derived a set of approxi-
mate inequalities governing the emergence of classical mo-
tion in an observed quantum system consisting of a single
particle. These inequalities define the strong QCT as they
delineate the conditions under which an observed single par-
ticle will follow a localized classical trajectory. For purposes
of succinctness, we will therefore refer to the inequalities
derived by Bhattacharya et al. as the strong inequalities,
since they relate to the QCT in the strong sense. Throughout
the paper, we will also denote the expectation values for the
momentum and position of the single particle system as x
and p.

The classical Hamiltonian for the system at �x , p� is gen-
erally time dependent and of the form

H�x,p,t� =
p2

2m
+ V�x,t� , �1�

where F�x , t�=−�V�x , t� /�x is classical force, and, as usual,
m is the particle mass. For the remainder of the work, we
will not explicitly denote the time dependence of functions
of phase-space variables. The first of the strong inequalities
determine when the centroid of the wave function will re-
main sufficiently localized that the centroid will obey classi-
cal mechanics, and is divided into two regimes. When the
strength of the nonlinearity, as measured by the magnitude of
�x

2F�x�, is small enough to satisfy

��x
2F� �

4�F��m��xF�
�

, �2�

then the condition is

k � � �x
2F

8F
����xF�

2m
. �3�

When the strength of the nonlinearity violates Eq. �2�, the
condition becomes

k � � �x
2F

8F
	22�

m
. �4�

Here k is the “measurement strength,” which is the parameter
that determines the rate at which the environment extracts
information about the system �28�. An example is given by
the weak-coupling, high temperature limit of the Caldeira-
Leggett master equation describing a single particle interact-
ing with a thermal environment �29�. In this case k=D /�2,
where D is the rate of momentum diffusion due to the envi-
ronment. Note that while k is a constant, F depends on x, and
thus varies over the phase-space of the system. Thus the
right-hand sides of the inequalities above are understood as
being averaged over the phase-space, weighted by the rela-
tive time the particle spends at each point.

The inequalities as given in �8� also include a dimension-
less quantity �, referred to as the measurement efficiency,
which is the fraction of the extracted information that is ac-
tually obtained by the observer. When considering the mea-
surement analysis merely as a tool to derive results regarding
the transition in terms of the Wigner function, � is irrelevant.
Thus in comparing the strong inequalities with the weak
transition derived by Greenbaum et al., we will always set
�=1, corresponding to the assumption that any observer has
all the available information. Choosing a smaller value of �
is useful only when considering the behavior of observed
trajectories in particular physical situations where the infor-
mation available to observers is limited by practical consid-
erations.

The second part of the strong inequalities gives the con-
dition under which the noise in the observed trajectories is
negligible, so that they follow the smooth classical evolution
given by the Hamiltonian. This consists of two inequalities
that must both be satisfied:

2��xF�
s̄

� �k �
��xF�s̄

4
. �5�

Here s̄ is a measure of the action of the system in units of �.
Specifically, s̄
min�S /� ,S� /��, where

S =
�p�3

8m�F�
, �6�

S� =
m�F�3

�p���xF�2 . �7�

Both S and S� are expressions involving the system param-
eters that have units of action.
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The strong inequalities are thus given by Eq. �3� or Eq.
�4�, and Eq. �5�. The first two state that the measurement
must be strong enough to successfully limit the spreading of
the wave packet induced by the nonlinearity. The second set,
given in Eq. �5�, states, essentially, that the action of the
system in units of � should be sufficiently large so that there
is a value of k that satisfies both inequalities. As the action of
the system becomes very large compared to �, then effec-
tively any measurement strength will satisfy these inequali-
ties, and this defines the classical limit.

B. The weak QCT

The conditions derived by Greenbaum et al. �22,23� give
a time scale for when a Wigner function for a quantum sys-
tem driven by environmental noise will agree with a noise-
driven classical phase-space density. Moreover, the weak
QCT has two distinct regimes depending on the noise level:
a small noise regime in which the transition occurs after the
classical structure evolution is in a global steady state and
another in which the transition occurs locally while large
structures are still forming. We now reformulate the condi-
tions in �23� to obtain an expression for the measurement
strength which separates these regimes, allowing comparison
with the strong inequalities. We also extend the results by
providing a weak inequality relevant to the strong QCT low-
noise condition.

The arguments devised in �23� proceed in two parts. First,
a purely classical relation is derived which gives the phase-
space length scale l�t*�, below which noise will prevent the
creation of fine structure in the classical phase-space density
beyond a time t*. This is derived by calculating two phase-
space lengths, both of which are functions of time, and
equating them. These lengths are scaled so as to have units of
the square root of the phase-space area. The first is the length
over which the noise destroys fine structure as a function of

time, which is given by lcl�t�=�Dt / �m�̄� where �̄ is the
usual classical Lyapunov exponent defined over the bounded
phase-space region. lcl clearly increases with time. The sec-
ond length is the scale of the phase-space structures devel-

oped by the dynamics, �=��Ae−�̄t, which decreases with
time. The steady-state length scale l is the point at which
these two match. Equating lcl and �, we obtain an expression
for the diffusion constant in terms of the length scale l.
This is

D�l� �
2m�̄2l2

ln��A/l2�
, �8�

where A is the phase-space area accessible to the system, and
l is a length with units of �A. There is, however, an ambigu-
ity in the value of �. This comes from the expression for the
length scale of the fine structure in the classical density. Its
role is to set the scale of the structure in the density of the
initial state. As a result, � can be anywhere in the range
�1,A /��: the lower bound corresponds to an initial state that
is uniform over essentially all phase-space, and the upper
bound to an initial state that is confined to a single cell of
area �. This upper bound comes from the fact that any quan-

tum phase-space density is limited to fine structure on the
order of �, and there is therefore no point in considering
initial classical densities with finer structure. In fact, due to
the logarithm in the expression for D�l�, the ambiguity in �
can be dealt with quite easily. To do so we merely choose the
upper or lower bound, whichever provides the most stringent
condition. That is, we choose the value of � so as to err on
the safe side.

The second step is deriving a condition under which noise
is sufficient to wash out interference fringes on length scales
below lcl. This condition defines the weak QCT. In �22,23�
semiclassical arguments are used to show that inference
fringes are washed out on the length scale of lqu�t�
=���̄m / �Dt�=� / lcl�t�. If we set lqu= lcl, then we obtain a
simple condition purely in terms of lcl:

lqu
2 � lcl

2 � � . �9�

The weak QCT will occur for distributions at a time, tqc

�m��̄ /D. By equating l and lqu or, equivalently, t* and tqc,
we find the threshold between two distinct weak QCT re-
gimes, which define whether the weak QCT occurs before
classical structure growth terminates. Interpreting this noise
as coming from measurement we set D=�2k yielding

kcrit �
2m�̄2

� ln��A/��
. �10�

Further, we can identify A with the action of the system, so
that s̃
A /� is an action for the system in units of �. This
gives

kcrit �
2m�̄2

� ln��s̃�
. �11�

Now, since we know that �� �1, s̃�, we see that the difference
between taking the maximum and minimum values of � only
results in a factor of 2 difference in the right-hand side. To
obtain our final expression, we take � to have its minimum
value as this results in the most stringent condition. The re-
sult is

kcrit �
2m�̄2

� ln�s̃�
. �12�

When k is greater than this value the weak QCT will occur
while classical structures continue to evolve, while for
smaller values classical structures will stop forming before
the weak QCT. We also want a condition under which noise
is negligible so as to obtain the classical limit in the narrow
sense. This will be true if the “smearing area” l2 is small
compared to the accessible phase-space A. Imposing this
condition on the relation in Eq. �8�, we have

k � �m�̄2

�
	 2s̃

ln�s̃�
, �13�

where this time we have set � at its maximum value to obtain
the most stringent condition. Putting the two inequalities to-
gether, we define the regime in which the weak QCT occurs
while large classical structures continue to form,
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�2m�̄2

�
	� 1

ln�s̃� 	 k � �2m�̄2

�
	� s̃

ln�s̃� . �14�

It is important to note that since the weak QCT has been
understood using semiclassical arguments, we can only ex-
pect these arguments to be strictly valid in the semiclassical
regime—that is, when the dimensionless action of the system
s�1, and when the noise is relatively small in comparison to
the classical dynamics �that is, when l2 is small compared to
the accessible phase-space area A�.

III. THE EMERGENCE OF CLASSICALITY:
WEAK VS STRONG

We wish to examine the relationship between the weak
and strong quantum-to-classical transitions. Unlike the weak
QCT, the strong QCT only occurs after a minimum noise
threshold is met. The observed wave function is highly lo-
calized in phase-space and the noise on observed trajectories
is negligible. In this case the weak QCT should also have
taken place. That is, the quantum Wigner function will agree
with the classical density, and this density will exhibit fine
structure down to a length scale much smaller than the avail-
able phase space A. This result should follow immediately
from the fact that �i� the Wigner function is merely the sum
of the Wigner functions for all the possible localized ob-
served wave packets, �ii� the centroid of each wave packet
obeys the classical equations of motion, and �iii� each wave
packet has area l2 and therefore has a width of order l in each
�dimensionless� phase-space direction.

Second, if we are in the above highly localized regime,
the weak QCT should imply the strong QCT. That is because
the Wigner function would not exhibit the same fine structure
�that is, the same structure of foliating unstable manifolds� as
the classical density if the equivalent observed trajectories
were not following the classical dynamics. �In fact, by con-
sidering the constraints on the trajectory Wigner functions
implied by the scale of the fine structure, one can derive a
quantitative condition for when the weak transition implies
the strong, and we will do this in Sec. IV.�

With the above discussion in mind, we now compare di-
rectly the strong and weak QCT. This is easy to do if we
approximate the local Lyapunov exponent by its global
value. This approach is consistent with the inequalities of
Bhattacharya et al. in which one equates local forces with
their phase-space averages. The local Lyapunov exponent
measures the local stretching rate of a point in phase-space,
�x0 , p0�. The linearized Newton’s equation for the perturba-
tion, �x, then yields

m
d2�x

dt2 � ��xF�x0
�x . �15�

The local Lyapunov exponent is defined by the solution to
this equation:

�x�t� � �x0e�t, �16�

where

�2 =
��xF�

m
. �17�

We now simply replace � with its average value over phase-

space, �̄, to complete the approximation.
Using this relationship, the strong inequalities that give

the conditions for low noise �Eq. �5�� become

�2m�̄2

�
	�1

s̄
 � k � �2m�̄2

�
	� s̄

8
 . �18�

We see that these are very similar to the weak QCT regime
defined by Eq. �14�.

We assume that the “actions,” s̄ and s̃, that we associate
with the system, are both approximately equal to the system
action, and may therefore be equated. In the semiclassical
regime, in which s̃�1, we have both s̃� ln�s̃� and ln s̃
�O�8�, so that the weak regime above kcrit and the strong
low-noise criteria are essentially equivalent. This is logical,
as the strong QCT assumes that the trajectories explore clas-
sical structures. The caveats to this are that when s is ex-
tremely large, being in this weak regime implies the strong
low-noise inequality �both the left-hand inequality and the
right-hand inequality�. That is, the conditions for this regime
are stronger than the strong low-noise inequality. By com-
paring Eqs. �18� and �14� we can write down a specific con-
dition under which a system being in the k
kcrit weak re-
gime implies the strong low-noise inequality. This is

s � e8 � 3 � 103. �19�

In the opposite case, when s is not much larger than unity,
the strong low-noise inequality is satisfied over a range of k
values before kcr is reached signaling the start of the weak
regime, though this requires relaxing the semiclassical con-
dition, which may affect the validity of the weak approxima-
tion.

The above result raises a curious question. The derivation
of the weak QCT above kcrit would lead us to believe that
this is a sufficient condition for the emergence of classical
motion in the semiclassical regime defined by Eq. �19�, both
at the trajectory and density levels. However, the weak QCT
is most easily compared to the strong inequalities that guar-
antee low noise �Eq. �5��. The derivation of the strong in-
equalities implies that a second condition is required to guar-
antee classical behavior, this being the bound relating the
noise to the size of the nonlinearity given either by Eq. �3� or
Eq. �4�. Either the weak QCT regime as derived is not as
complete as previously assumed, or the part of the strong
inequalities that bound the nonlinearity is redundant in this
semiclassical regime.

It turns out that the answer is the latter. That is, in the
semiclassical regime defined by Eq. �19�, the weak QCT re-
gime defined by Eq. �14� also implies that both localization
conditions �Eqs. �3� and �4�� are satisfied. To see this we note
that it will be true if
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2m�̄2

� ln�s�
� � �x

2F

8F
� �̄

�2
�20�

and

2m�̄2

� ln�s�
� � �x

2F

8F
	22�

m
. �21�

We now note that the quantity s�, defined as

s� 

m�̄�F�
���x

2F�
�22�

is also a dimensionless action for the system in units of �. As
with Eq. �5�, we have substituted the average Lyapunov ex-

ponent �̄ into the strong inequalities. Assuming that s� is of
the same order as the dimensionless action of the system s,
Eqs. �20� and �21� become

s �
ln�s�
16�2

�23�

and

s �
�ln�s�

8
. �24�

These inequalities are automatically satisfied in the semiclas-
sical regime, where s�1. Significantly, they will be satisfied
when the semiclassical criterion given by Eq. �19� is met.
The conclusion is that Eq. �19� defines a semiclassical re-
gime where the strong QCT will be satisfied when the weak
QCT occurs in the Eq. �14� regime.

This also constrains the time tqc at which the weak QCT

occurs. Since D=�2k, we can write tqc�m�̄ /�k. The strong
QCT will occur within the large k region. Since k will be
large the weak QCT will also occur quickly. This is not sur-
prising, as localization at a level which allows a trajectory
picture should imply that interference is rapidly eliminated
and a local classical picture should emerge regardless of
whether the system achieves a global steady state.

We now turn to the question of what it means for the
quantum-to-classical transition to occur in the weak sense
without having occurred in the strong sense, particularly in
the k range we have been discussing. It is clear that this
should not happen in the low-noise regime. In this regime the
wave function of an observed trajectory is small compared to
the available phase-space, and thus fine details in the struc-
ture of the phase-space densities are visible. The trajectories
are smooth, since the noise is small in comparison to the
deterministic classical dynamics. It is also clear, as men-
tioned above, that the trajectories must obey the classical
equations of motion. If this were false, they would not give
the same fine structure as the classical density when their
�well-localized� Wigner functions are averaged over all noisy
realizations. It is similarly clear that when the low-noise in-
equalities are violated the weak transition should be able to
occur without the strong transition, as the lack of a weak
noise threshold implies. This is because the dynamics due to
noise alone is the same in both quantum and classical sys-

tems. Thus if noise dominates the dynamics, then the quan-
tum and classical densities will agree closely, even though
the observed trajectories will also be noise dominated and
will therefore not follow smooth motion of the classical
Hamiltonian.

What is not so clear is how the weak transition occurs
when noise does not swamp the deterministic dynamics, but
the wave function of an observed trajectory is sufficiently
delocalized that the dynamics of its centroid remain noisy.
Note that in this case the noise on the centroid is not purely
a result of the noise introduced by the measurement or envi-
ronment, but is due in large part to the fact that the wave
function is broad. The implication is that the observer does
not know well the location of the system in phase-space, and
thus the centroid of the wave function changes significantly
as the observer obtains the random stream of measurement
results. This is what one would expect in a weaker noise
domain.

The question of how the weak QCT is satisfied while
violating the strong was discussed briefly in �22�. We now
provide more detailed results on this question, by simulating
the Duffing oscillator with the same parameters as consid-
ered in �22�. The Hamiltonian of the Duffing oscillator is
�30�

H = p2/�2m� − �x2 + x4 + � cos��t� , �25�

where the parameters are chosen to be �m ,� , ,� ,��
= �1,10,0.5,10,6.07�, and for the quantum simulation we
choose �=0.1. Choosing the value of � is merely a conve-
nient means of setting the action of the system relative to �.
Here we fix the action �equivalently the available phase-
space area A�, and choose the area that a minimum uncer-
tainty wave packet occupies by setting the value of �.

In �22� the weak QCT is demonstrated for the momentum
diffusion rate D=0.01. We now examine the behavior of the
observed trajectories in this regime. The environment consid-
ered in �22,23� is equivalent to a continuous measurement of
the oscillator position x and the measurement strength k
=D /�2=1. The equation of motion for the system density
matrix under this continuous measurement is given by the
stochastic master equation �25�

d� = − �i/���H,��dt − k�x,�x,���dt

+ �2k�x� + �x − 2�x���dW , �26�

where dW is the increment of Wiener noise satisfying
�dW�2=dt. We choose the initial state to be a minimum un-
certainty �coherent� state with centroid ��x� , �p��= �−3,8�,
and position and momentum variances equal to � /2=0.05.
The accessible phase-space for the classical system has
position boundaries at approximately ±5, and momentum
boundaries at ±20.

In Fig. 1 we show the Wigner function for the oscillator
after a time of t=12 �approximately 12 periods of the drive�,
along with the corresponding probability density for the po-
sition of the oscillator. The position wave function is spread
over a significant region of the available phase-space, and
one therefore expects the trajectory for the mean position to
experience significant noise. In Fig. 2 we plot the mean po-
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sition up to t=12, and indeed the effect of the noise is clearly
visible. The quantum and classical phase-space densities can
thus agree on intermediate scales and achieve a weak QCT,
even if the observed trajectories do not follow the smooth
classical dynamics.

IV. DERIVING THE STRONG TRANSITION
FROM THE WEAK

In the previous section we derived the regime of the weak
QCT where the strong QCT is also satisfied �Eq. �19��. Here
we use an alternative approach to derive a set of conditions
under which the weak transition will imply the strong. To
begin we note that the existence of fine structure at the scale
of the phase-space area l2 bounds the width of the wave
functions of the trajectories. This is because the phase-space
density is an average over the wave functions of all trajecto-
ries, and this automatically precludes the phase-space density
from having oscillations smaller than the width of the wave
function. Using �m��xF��1/4=�m� as the scaling factor be-
tween position and the phase-space length l, this bound is

Vx � m�l2. �27�

Thus if l is small enough, then it will force the wave function
for the corresponding trajectory to be localized. This, in turn,
will force it to satisfy the conditions of the strong QCT. In
this case the weak transition will imply the strong. This is
because all three strong inequalities, Eq. �3� �or Eq. �4�� and
Eq. �5�, are in fact a result of conditions limiting the position
variance, as shown in Ref. �8�. We can therefore derive quan-
titative inequalities determining when the weak QCT will
imply the strong, by using the strong bounds on Vx, then Eq.
�27� to bound l, and finally Eq. �8� to derive bounds on k.

There are three strong bounds on Vx: the bound that leads
to the localization condition �Eq. �3� or Eq. �4�� and the two
bounds that lead, respectively, to the two low noise inequali-
ties given in Eq. �5�. The bound that leads to the localization
inequality is �8�

Vx �
2F

�x
2F

. �28�

Using the procedure just described, this gives the following
condition on k:

k � �4m�2

�
	� s�

ln�s̄s̃/�2s��� � �4m�2

�
	� s

ln�s/2� . �29�

The bound on Vx that leads to the left-hand side of Eq. �5� is
Vx��S / �km� �8� where S has units of action and is given by
Eq. �6�. This leads initially to the inequality

k � �2m�̄

�
	� S

2�
	1/3

ln��A� k

Sm�̄2	−1

. �30�

To complete the derivation we need to eliminate k from the
right-hand side. Since we are deriving a condition for when
the weak transition implies the strong, we can assume that
the weak QCT takes place in the regime given by Eq. �14�.
So as to be conservative �that is, to derive the weakest con-
dition� we should choose the value of k on the right-hand
side to be as large as possible. A very conservative value for
k is to saturate the upper bound in Eq. �14�, and this gives

FIG. 1. �Color online� �a� A typical Wigner function for the
Duffing oscillator when �=0.1 and the measurement strength k=1.
In this plot luminosity denotes the absolute value of the real part of
the Wigner function �thus black corresponds to zero�. �b� The asso-
ciated probability density for the position of the oscillator. The
wave function is spread over a significant region of the phase-space.

FIG. 2. �Color online� The mean position of the observed Duf-
fing oscillator when �=0.1 and k=1. The position uncertainty of the
quantum state is manifest in the noise that is visible on this
trajectory.
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k � �2m�̄

�
	� S

2�
	1/3

ln�s̄�2s̄s̃

ln s̃
	−1

� �2m�̄

�
	22/3� s1/3

ln�2s4/ln s� . �31�

The third and final bound on Vx is �8�

Vx
2 �

1

4mk
� m�F�3

8k�p�xF�
. �32�

This results in the condition

k � �2m�̄

�
	8−1/7� s1/7

ln�32s5�ln s�−3/2� , �33�

where we have assumed that S� /��s.
If we satisfy each of the three inequalities given by Eqs.

�29�, �31�, and �33�, then the weak transition will imply the
strong transition. The second and third conditions, Eqs. �31�
and �33�, are, however, more stringent than the weak regime
we have invoked. In order to be within the localized regime
and satisfy these conditions, we must at least have

1

ln s
� � s1/7

ln�32s5�ln s�−3/2� . �34�

When s�10, the denominator on the right-hand side is well
approximated by 1/ �5 ln s�, and so we have

s � 57 � 105. �35�

Comparing this with the equivalent condition in Sec. III, Eq.
�19�, we see that while the two results are similar, the latter
result �Eq. �35�� is well above the threshold set in Sec. III.
Thus the above analysis, while providing an alternative ap-
proach, reinforces the interpretation of that section. We may
therefore conclude that the criterion given by Eq. �19�, de-
rived indirectly by comparing the weak and strong QCT, will
also be met by the more intuitive criterion derived in this
section.

V. CONCLUSION

There are two ways to ask if �nonlinear� classical dynam-
ics has emerged from the evolution of a quantum system.
One is to observe the system and to ask when the motion of
a localized centroid is indistinguishable from the classical
trajectories. When this is true we refer to the system as hav-

ing made the transition in the strong sense. The other method
is to obtain only the phase-space probability densities for the
classical and quantum motion, and to ask when the these
densities become indistinguishable. When this is true we say
that the system has made the transition in the weak sense.
Two distinct methods have been used to determine how an
open quantum system will make the transition to classical
dynamics.

Here we have shown that in the semiclassical regime �the
regime in which the weak inequalities are valid�, these two
levels of description may be compared. Specifically, when
the action of the system is much larger than �, the inequali-
ties implying a rapid weak QCT, which takes place before a
classical steady state, are stronger than those implying the
strong QCT. We have also pointed out that when the action is
much larger than �, and the environmental noise is very
small, both this weak regime and the strong transition are
essentially equivalent, regardless of the exact behavior of the
respective inequalities.

From the above analysis we have also shown that in the
semiclassical regime the strong inequalities may be simpli-
fied, so that in both the weak and strong cases, the conditions
for the emergence of classical motion involve simple in-
equalities. The inequalities accompanying the strong QCT
are

1

s
�

D

2�m�̄2
�

s

8
�36�

while, in defining this weak region where the QCT precedes
the termination of classical structure, we get

1

ln s
	

D

2�m�̄2
�

s

ln s
. �37�

Here D is the momentum diffusion coefficient due to the
measurement or environment, � is the Lyapunov exponent
for the system, s is the action of the system in units of �, and
m is the mass.

We have also derived a very simple sufficient condition
for when this weak regime implies the strong transition, and
this is S /��103, where S is the action of the system. When
this condition is not met, the weak transition occurs without
the smooth trajectories of classical mechanics. However, in
the semiclassical limit this weak regime is entirely sufficient
to determine the emergence of classical dynamics in a quan-
tum system.
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